skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chao, Keng-Hsien"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Davemaoite (CaSiO3 perovskite) is considered the third most abundant phase in the pyrolytic lower mantle and the second most abundant phase in the subducted mid-ocean ridge basalt (MORB). During the partial melting of the pyrolytic upper mantle, incompatible titanium (Ti) becomes enriched in the basaltic magma, forming Ti-rich MORB. Davemaoite is considered an important Ti-bearing mineral in subducted slabs by forming a Ca(Si,Ti)O3 solid solution. However, the crystal structure and compressibility of Ca(Si,Ti)O3 perovskite solid solution at relevant pressure and temperature conditions had not been systematically investigated. In this study, we investigated the structure and equations of state of Ca(Si0.83Ti0.17)O3 and Ca(Si0.75Ti0.25)O3 perovskites at room temperature up to 82 and 64 GPa, respectively, by synchrotron X-ray diffraction (XRD). We found that both Ca(Si0.83Ti0.17)O3 and Ca(Si0.75Ti0.25)O3 perovskites have a tetragonal structure up to the maximum pressures investigated. Based on the observed data and compared to pure CaSiO3 davemaoite, both Ca(Si0.83Ti0.17)O3 and Ca(Si0.75Ti0.25)O3 perovskites are expected to be less dense up to the core-mantle boundary (CMB), and specifically ~1–2% less dense than CaSiO3 davemaoite in the pressure range of the transition zone (15–25 GPa). Our results suggest that the presence of Ti-bearing davemaoite phases may result in a reduction in the average density of the subducting slabs, which in turn promotes their stagnation in the lower mantle. The presence of low-density Ti-bearing davemaoite phases and subduction of MORB in the lower mantle may also explain the seismic heterogeneity in the lower mantle, such as large low shear velocity provinces (LLSVPs). 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Externally heated diamond anvil cells provide a stable and uniform thermal environment, making them a versatile device to simultaneously generate high-pressure and high-temperature conditions in various fields of research, such as condensed matter physics, materials science, chemistry, and geosciences. The present study features the Externally Heated Diamond ANvil Cell Experimentation (EH-DANCE) system, a versatile configuration consisting of a diamond anvil cell with a customized microheater for stable resistive heating, bidirectional pressure control facilitated by compression and decompression membranes, and a water-cooled enclosure suitable for vacuum and controlled atmospheres. This integrated system excels with its precise control of both pressure and temperature for mineral and materials science research under extreme conditions. We showcase the capabilities of the system through its successful application in the investigation of the melting temperature and thermal equation of state of high-pressure ice-VII at temperatures up to 1400 K. The system was also used to measure the elastic properties of solid ice-VII and liquid H2O using Brillouin scattering and Raman spectra of carbonates using Raman spectroscopy, highlighting the potential of the EH-DANCE system in high-pressure research. 
    more » « less
  3. Abstract Accurate knowledge of the phase transitions and thermoelastic properties of candidate iron alloys, such as Fe‐Si alloys, is essential for understanding the nature and dynamics of planetary cores. The phase diagrams of some Fe‐Si alloys between 1 atm and 16 GPa have been back‐extrapolated from higher pressures, but the resulting phase diagram of Fe83.6Si16.4(9 wt.% Si) is inconsistent with temperature‐induced changes in its electrical resistivity between 6 and 8 GPa. This study reports in situ synchrotron X‐ray diffraction (XRD) measurements on pre‐melted and powder Fe83.6Si16.4samples from ambient conditions to 60 GPa and 900 K using an externally heated diamond‐anvil cell. Upon compression at 300 K, thebccphase persisted up to ∼38 GPa. Thehcpphase appeared near 8 GPa in the pre‐melted sample, and near 17 GPa in the powder sample. The appearance of thehcpphase in the pre‐melted sample reconciles the reported changes in electrical resistivity of a similar sample, thus resolving the low‐pressure region of the phase diagram. The resulting high‐temperature Birch‐Murnaghan equation of state (EoS) and thermal EoS based on the Mie‐Gruneisen‐Debye model of thebccandhcpstructures are consistent with, and complement the literature data at higher pressures. The calculated densities based on the thermal EoS of Fe‐9wt.%Si indicate that bothbccandhcpphases agree with the reported core density estimates for the Moon and Mercury. 
    more » « less